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Abstract: Comprehensive analysis of the metabolome can contribute to mechanism of action studies for small
molecules discovered in phenotypic screens. Examples are presented in this overview of the rapidly
developing field of “metabolic profiling.” These examples include the use of NMR in gene function analysis,
GC-based studies on the identification of metabolic pathways affected by PPAR-γ agonists, applications of
Fourier-transform MS and the use of stable isotope-based metabolic profiling (SIDMAP) to investigate
metabolic adaptive changes induced by effective anticancer agents.
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INTRODUCTION

In the post-genomic era it remains true that the goal of
the pharmaceutical industry is not simply to find novel drug
targets but to find small molecule compounds that modulate
their activity. A corollary, of course, is that small molecules
can also be exploited to discover novel targets. This
approach is sometimes referred to as ‘reverse pharmacology’
or ‘chemical genetics.’ There are now numerous examples
where small molecules have been utilized to isolate and
identify new drug targets and dissect signal transduction
pathways [1-7]. This has often been true where traditional
molecular genetic approaches have proven of limited
applicability or value. Much of the research in this area has
been extensively reviewed. Prominent examples of ‘tool’ or
‘probe’ compounds typically cited (Fig. 1 ) include
fumagillin (1) [8, 9], trapoxin (2) [10-12], cyclosporin (3)
[1, 13-16], FK506 (4) [1, 13-16] and rapamycin (5) [17-19].
Fumagillin (1 ) was implicated in the discovery of
methionine aminopeptidase-2 [8, 9]. Trapoxin (2) was the
basis of the discovery of histone deacetylase [10-12], a
finding that has now facilitated investigations on the
interactions between chromatin disassembly and
transcriptional regulation. The immunosuppressants,
cyclosporin (3) and FK506 (4), are well-studied inhibitors of
the T-cell receptor that act through inhibition of calcineurin
[1, 13-16]. Rapamycin (5) has been used extensively as a
tool compound to dissect nutrient signaling pathways in
yeast [17-19].

Many of the compounds that have found value as
“probes” in identifying new targets or in dissecting signal
transduction pathways have been complex natural products.
Their discovery has generally been serendipitous and the ad
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hoc nature of this approach is simply not commensurate
with the high-throughput screening demands of today’s
pharmaceutical industry. There have now been many
attempts to synthesize diversity-oriented libraries of natural
product-like companies that can be utilized in high-
throughput phenotypic screening [20-23]. Examples of
complex natural product-like compounds from these libraries
(Fig. 2) include uretupamine (6) [7], which activates a
glucose-sensitive transcriptional pathway and has remarkable
specificity towards the yeast protein ure2p, and secramine,
(7) [24] which inhibits protein trafficking from the Golgi
apparatus.

Many simpler compounds (at least in terms of fewer
stereogenic centers, synthetic accessibility and lower average
masses) that could be described as ‘drug-like’ have shown
value in this discipline (Fig. 3). In a screen for mitosis-
specific inhibitors that do not interact directly with
microtubules, monastrol (8) [2] was shown to be a selective
inhibitor of the kinesin-related motor protein, eg5.
Compound A3 (9) [25] was identified as an inhibitor of the
yeast transcriptional repressor, sir2p. Furthermore, many
simple compounds have demonstrated the ability to produce
phenotypes that are similar to those caused by genetic
mutations [26]. Thus, for example, compounds 31J6 (10),
31N3 (11) and 32N5 (12) induce phenotypic changes in
developing zebrafish that are highly analogous to the
breakdance, keinstein and atlantis mutants, respectively
[26].

Obstacles to a systematic reverse pharmacology or
chemical genetic approach continue to be overcome through
advances in diversity-oriented library design and
developments in transcriptional profiling, reporter gene
assays, cytoblots and automated microscopy. It is thus
possible, at least in principle, to design a high-throughput
chemical genetic screen for any biological process and
identify compounds that can further dissect these processes
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Fig. (1). Prominent examples of natural products utilized in chemical gentics etudies.

[4]. In other words, the ability to systematically utilize
synthetic compounds in target discovery and gene function
analysis is now a reality.

Transcriptional profiling is increasingly popular in gene
function analyses and in assessing the mechanism of action
of “tool” compounds. Several studies have demonstrated its
value in finding new disease-associated targets and as a
diagnostic tool. There are, however, limitations in applying
mRNA (or even protein) profiling as a general tool for
reverse pharmacology approaches. The paradigm of linear
control from gene expression to transcription and translation
to metabolic status has been challenged by a case study on
the regulation of glycolysis [27]. Low correlations between
mRNA and protein abundances [28], fluctuations in RNA or
protein turnover rates, and the complexity of protein
interaction networks also imply further limitations.

Metabolic adaptive changes can be regarded as the end-
point of all regulatory steps that respond to external
perturbations, including the administration of biologically
active synthetic compounds. Since even small differences in
metabolic flux rates can result in pronounced changes in

metabolite abundances [29-31], analytical technologies
devoted to measuring changes in metabolic status can be
powerful in assessing the effects of “tool” compounds and
drugs. Although the mechanism of action of synthetic
compounds or even gene functions are unlikely to be pinned
down definitively by metabolic profiles alone, the
concentration changes observed on even minor changes in
metabolic fluxes can be exploited, as will be discussed later,
in screening and in comparative strategies.

Finally, both transcriptomics and proteomics are
associated with high cost, limiting both the number of time-
points evaluated after exposure to a given compound and the
number of analyzed biological replicates. At this point,
metabolomic assessments, which are considerably less
expensive than transcriptomics or proteomics, may be
considered.

WHAT IS METABOLIC PROFILING?

Metabolic profiling [32] involves the acquisition of
metabolome data sets of sufficient spectral and/or
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chromatographic richness and resolution for multivariate
statistical analyses and for metabolite identification and
quantitation. Major strands of this discipline, as discussed
below, include metabolic fingerprinting, metabonomics and
metabolomics. Whilst metabolic fingerprinting and
metabonomics assume it is not necessary to determine levels
of all individual metabolites for classification or response
readouts, metabolomics absolutely requires the identification
and quantitation of as broad a class of metabolites as
possible. Terminologies related to metabolic profiling are
still developing but there appears to be consensus around the
definitions provided by Fiehn [33]. Of some minor
scholastic interest in regarding "metabolomics" as an
extremely pertinent term for the comprehensive study of
cellular and systemic metabolic changes induced by
chemical, genetic or environmental factors is the
etymological origin of metabolism; 'metabol' is the ancient
Greek for change, 'metabolikos' means changeable.

METABOLIC FINGERPRINTING AND METABO-
NOMICS

According to Metabolic Control Analysis [29-31], gene
deletion will inevitably lead to changes in the concentration
of small molecule metabolites even when phenotypic
changes are negligible. Exploiting this principle, a yeast

metabolic fingerprinting method for determining gene
function, particularly for genes whose deletion results in a
“silent” phenotype, was recently introduced [34]. In a proof-
of-principle experiment, 1H nuclear magnetic resonance
(NMR) analysis was used to measure the concentration of
metabolites from different strains of yeasts including those
with deletions of genes coding for enzymes involved in
glycolysis and respiration. Multivariate analyses of recorded
NMR spectra allowed differential clustering of mutants with
different gene deletions and co-clustering of mutants with
related gene deletions. Specifically, in this experiment two
strains with knockouts of different phosphofructokinase
genes (pfk∆26 and pfk∆27) had similar metabolome patterns
whereas strains with deletions associated with the respiratory
chain had altered metabolome patterns that did not cluster
with the phosphofructokinase-deficient strains (Fig. 4).

These findings imply that a stable database of
metabolome patterns associated with known single-gene
defects can facilitate the use of pattern recognition-based
metabolic profiling to identify the function of unknown
genes by spectral analysis of the metabolome of the relevant
gene deletant. Other measurement technologies such as
Fourier-transform infra-red spectroscopy (FT-IR) [35, 36] or
mass spectrometry (MS) [37-41] have demonstrated utility
in discriminating between closely related microbial species
and have now been utilized in metabolome studies. Principal
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Fig. (4). The principle behind metabolic fingerprinting and metabonomics is to record spectra (in this instance an NMR spectra is
presented but FT-IR, Raman and mass spectra can also be used) and reduce the dimensionality of the data through PCA to allow ready
visualization of similar and dissimilar spectra. Spectra are typically normalized on both axes to allow quantitative comparisons.
Selected spectral regions can be removed if desired e.g. such as the aromatic region of the NMR spectra in the yeast metabolic
fingerprinting method (see text). Discriminant Function Analysis utilizes PC projections and “a priori” information on instrument
replicates to minimize within-group variance thus maximizing between-group variance. In the yeast metabolome example presented
in the text the circles would represent two mutants (six instrument replicates) with similar deletions (e.g. pfk∆26 and pfk∆27) while
the square and triangle would represent unrelated strains. Other routinely used chemometric options include soft independent
modeling of classification analogy, partial least squares (PLS) analysis and PLS discriminant analysis. The goal, ultimately, is to
determine which spectra (of gene deletants or compound treated organisms) are most similar and thereby establish which gene
deletions or compound administrations yield similar or different phenotypes.

components and discriminant function analyses, as alluded
to in the accompanying text for (Fig. 4), are far from the
only chemometric options available, and ‘supervised’
machine learning approaches, such as neural networks or
evolutionary computation, are increasingly popular [42, 43].

The fingerprinting approach utilized in the above ‘proof-
of-principle’ experiment could also be applied to mammalian
systems (e.g.  as part of mutagen-driven studies on
embryonic stem cells [44]) and, more pertinently to this
discussion, to chemical modifiers of gene function such as
biologically active small molecules. Thus, in principle,
compounds identified from a phenotypic screen of
mammalian biology can be rapidly assessed for similarity or
differences in effecting metabolic changes. Such low-cost
metabolomic assessments could also serve as a filter or
prioritization tool for expensive transcriptomics or
proteomic analyses. Significantly, the low cost of metabolic
profiling allows time-series profiling. Such profiles record
metabolic changes over time offering a clearer understanding
of the overall effect of an administered compound on a
biological system. This can optimize selection of the most
functionally relevant time intervals for proteomic and
transcriptomic analyses.

Importantly, such approaches as exemplified in (Fig. 4),
utilize technology readily available to the pharmaceutical
industry and, as such, this use of metabolic screening in
mechanism-of-action studies is easily and immediately
implementable. An infrastructure through COMET
(Consortium on Metabonomics in Toxicology and which
comprises six major pharmaceutical companies) is
essentially already available for NMR based approaches [45-
47]. COMET have focused primarily on screening of urine
from drug-treated animals in order to associate organ toxicity
of given compounds with specific spectral patterns. However
the success of metabonomics in i) classifying compounds
according to their toxicological impact and ii) in
discriminating different strains of mice including transgenic
systems [48] clearly implies that wider pharmacological
applications, including reverse pharmacology or chemical
genetics, are feasible.

METABOLOMIC STRATEGIES

A major advantage of the fingerprinting approach and of
metabonomics is their amenability to automation and the
fact that they do not require explicit identification or
quantitation of specifically targeted classes of metabolites.
However, several metabolic profiling approaches are focused
on the identification and quantitation of as many metabolites
as possible or are devoted to assessing fluxes through
targeted pathways. Such methods, as will now be discussed,
include gas chromatographic (GC)-time-of-flight (TOF)
-MS, GC-flame ionization detection (FID), Fourier-
transform-MS and stable isotope label based metabolic
profiling (SIDMAP).

One of the earliest reported examples of reverse
pharmacology using metabolomics involved the use of direct
chemical ionization MS to investigate the effect of sterol
biosynthesis inhibitors, such as lombazole, on Candida
albicans metabolic profiles [49]. In both C. albicans forms
(hyphal and yeast-like) significant increases in the abundance
of dehydrolanosterol, lanosterol and 24-demethylene-24, 25-
dihydrolanosterol were recorded. These results pointed to
inhibition of the C-14 demethylation step in ergosterol
biosynthesis and demonstrated that lombazole selectively
inhibits cytochrome P-450 C-14 lanosterol α-demethylase.
This pioneering study proved that metabolic profiling could
be an effective way to investigate mechanisms of drug
action.

In the 15 years or so since this work there have, of
course, been major developments in MS technology and in
GC peak deconvolution algorithms [50]. GC-TOF-MS is
considered by some to be the “gold standard” [33, 51] for
metabolomic research and it has now been increasingly
applied in plant metabolism studies devoted to gene
function analyses [52]. Preliminary applications in
investigations of metabolic differences in transgenic animal
models have also been reported [53] and it is only a matter
of time before its wider application to studies on the
mechanism of action of compounds discovered in
phenotypic screens.
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Fig. (5). Reduction in the highlighted metabolites, indicating a perturbation in the sphingoglycolipid biosynthetic pathway, as well
as reduction in identified saturated and unsaturated fatty acids were recorded in a single FT-MS measurement of lovastatin-treated rat
hepatocytes. This illustrates the value of metabolic profiling in screening the effect of compounds on multiple pathways despite no
prior knowledge of pathways susceptible to perturbation. Additionally, [54] “comprehensive analyses of the metabolome can assess
metabolic response to a therapy with much greater accuracy and power than biomarker approaches.”

Evidence of the value of GC-based metabolomic methods
in assessing the effects of synthetic compounds has recently
been reported. Utilizing GC-FID, Watkins [54, 55] has
reported that Lipomics Technologies (www.lipomics.com)
can rigorously quantitate over 500 lipids from biological
samples and present this information in a visualization
package analogous to gene transcript array representations.
Their lipomic data can also be processed by in silico
algorithms that use quantitative metabolome information to
predict changes in in vivo enzyme activities. As a recent
example of their approach [54, 55], we can consider lipomic
profiling applied to a study of unusual phenotypic effects
induced by anti-diabetes drugs; in this instance, the
metabolic actions of rosiglitzaone, a PPAR-γ agonist [56]
and CL, 316, 243, a β-3 adrenergic agonist [57]. O n
administration to mice susceptible to hepatic steatosis and
type 2 diabetes these two drugs show similar reductions in
serum cholesterol, glucose and triglycerides. However,
rosiglitzaone effected a moderate increase in body-weight
whereas CL, 316, 243 effected a significant decrease.
Metabolic profiling revealed clear quantitative differences
between the plasma and hepatic lipid composition between
mice treated with the rosiglitazone versus those treated with
CL, 316, 242. Specifically, metabolites related to de novo
fatty acid synthesis were increased on rosiglitzaone treatment
but decreased by treatment with CL, 316, 243. The
steatosis-susceptible mouse model used in this study had an
intrinsic defect in the pathway for synthesizing
phosphatidylcholine for VLDL assembly and it appears that
rosiglitazone inhibited compensatory pathways. Clearly this
approach could be applied to evaluating the mechanism-of-
action of compounds discovered in phenotypic screens in
animal and cell systems. This study also emphasized that,
because many of the effects of these drugs on tissue
metabolism were reflected in plasma composition,

“metabolomics has excellent potential for developing clinical
assessments of metabolic response to drug therapy” and that
metabolic profiling has implications well beyond reverse
pharmacology experiments.

The high resolving power of Fourier transform-MS [58]
has also been applied to comprehensive metabolome
analyses. For example, Esperion Therapeutics
(www.esperion.com) investigated metabolic changes in rat
hepatocytes treated with lovastatin [59]. The purpose of this
study was to quantify concentration-specific cellular
responses to treatment by lovastatin on as many low
molecular weight metabolites as possible. Over 700 peaks
corresponding to individual metabolites were observed in
cell lysates and supernatants from lovastatin (and control)
treated samples. Of these, 36 exhibited a positive correlation
with respect to their relative abundance and the concentration
of administered lovastatin, whereas 42 exhibited a negative
correlation. Steps were subsequently taken to identify these
metabolite peaks using Esperion Therapeutics’ proprietary
data handling packages. Findings included a reduction in
squalene and propionic acid, which is consistent with the
mechanism of action of lovastatin. A reduction in saturated
fatty acids, (lauric acid, myristic acid, palmitic acid, and
stearic acid) indicated that flux through fatty acid synthase
was reduced. There was also a concomitant decrease in
unsaturated fatty acids such as myristoleic acid, palmitoleic
acid and oleic acid. Also observed were reductions in the
relative abundance of hexadecenal, sphingosine and
sphinganine implying perturbation of the sphingoglycolipid
biosynthesis pathway (Fig. 5), either by direct action on
enzymes involved in this pathway or modulation of an
allosteric regulator. In essence, multiple pathways affected
by drug treatment could be detected by FT-MS
metabolomics technology without any prior knowledge on
which pathways would be susceptible to compound-induced
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Table 1. Adaptive Changes Identified by Stable Isotope Based Metabolic Profiling

Treatment Target Pathways Metabolic Profile Phenotype

Gleevec (ST1571) (Bcr/Abl tyrosine
kinase inhibitor)

Glucose intake, pentose
cycle, fatty acid synthesis

Decreased glucose intake and carbon flow
through the oxidative pentose cycle; decreased
fatty acid synthesis; inhibitor of hexokinase and

G6PD

Decreased cell
proliferation, apoptosis

Genistein Pentose cycle, fatty acid
synthesis

Decreased glucose intake and carbon flow
through the oxidative pentose cycle; decreased

fatty acid synthesis

apoptosis

Avemar Pentose cycle, fatty acid
synthesis

Decreased glucose intake and carbon flow
through the oxidative pentose cycle; increased

fatty acid synthesis

Decreased cell
proliferation, apoptosis

Dehydroepiandrosterone sulfate
(G6PD inhibitor)

Pentose cycle Decreased oxidative pentose cycle flux G1 cell cycle arrest

Oxythiamine
(transketolase inhibitor)

Pentose cycle Decreased non-oxidative pentose cycle flux G1 cell cycle arrest

changes. The information generated by FT-MS can easily be
integrated with an existing reference databases of metabolic
pathways [60] and with transcriptomic and proteomic
analyses.

Another company focusing on the use of FT-MS in
metabolomic studies is Phenomenome Discoveries, Inc.
(www.phenomenome.com) Their bioinformatics package
includes a metabolome array analogous to gene transcript
arrays [61]. They have now reported on a metabolomic
investigation of two histone deacetylase inhibitors, butyrate
and trichostatin A [12]. Despite the same reported mode of
action, differential “expression” of metabolic pathways was
highlighted by FT-MS analyses when these compounds were
separately administered to HT29 human colon
adenocarcinoma cells. Cluster analyses (PCA) of the FT
mass spectra clearly distinguished the two different
compound treatments at 24 hours.

While the above methods are based on exploiting
changes in metabolite concentrations, other powerful
technologies include those based on assessing changes in
metabolic fluxes on compound administration. Stable
isotope-based metabolic profiling (SIDMAP) methods in
which labeled precursor molecules such as [1, 2-
13C2]glucose are applied to cell culture systems and the 13C
distribution patterns assessed by GC [62-64] (or even NMR
[e.g. 65]) technologies are proving to be valuable. This
approach has been used to investigate metabolic adaptive
changes induced by novel and effective anticancer agents.
Transformed cells exhibit unique anabolic characteristics,
which includes increased and preferential utilization of
glucose through the non-oxidative steps of the pentose cycle
for nucleic acid synthesis, but limited de novo fatty acid
synthesis and TCA cycle glucose oxidation. This primarily
non-oxidative anabolic profile reflects an undifferentiated
highly proliferative aneuploid cell phenotype and serves as a
reliable metabolic biomarker to determine cell proliferation
rate and the level of cell transformation/differentiation in
response to drug treatment. Drugs effective in particular
cancers exert their anti-proliferative effects by inducing
significant reversions of a few specific non-oxidative
anabolic pathways. This is summarized in Table 1.

Thus compounds discovered in phenotype screens related
to oncogenesis (e.g. apoptosis screens, G1 arrest) could be
prioritized by metabolic profiles showing desired metabolic
adaptations for further more extensive (and expensive)
studies.

INFORMATICS IMPLICATIONS

Unlike metabolic fingerprinting or metabonomic
strategies, which do not require explicit quantitation of
metabolites (and have relatively straightforward informatics
requirements), metabolomics requires that the recorded
metabolome data sets be processed algorithmically to yield a
list of metabolites (known or unknown) along with a
measure of their absolute or relative concentrations. As with
metabolic fingerprints, such data sets can be subjected to
chemometric analyses, including the use of supervised
machine learning [66]. A recent demonstration of the use of
pairwise correlations to analyze metabolome data sets
represents a stimulating approach to establishing a
relationship between metabolome data sets and pathway
analysis [67].

Reference biochemical databases are also important to
metabolomic research and many such databases (usually
devoted to single species) are in the public domain [60, 68].
Such databases catalog the known biochemical compounds,
reactions, enzyme activities, proteins and genes for each
organism and are required to provide biological and chemical
context to measurements made by metabolomic
technologies.

CONCLUDING REMARKS

Metabolic profiling represents a logical development in
the paradigm of genomics, transcriptomics and proteomics.
It may prove to be the most practically relevant and robust
discipline of all, particularly when applied to reverse
pharmacology or chemical genetic experiments. Even the
relatively simple fingerprinting and metabonomic strategies
are proving to have a substantial impact on several areas of
drug discovery and development. The continuing
development of new approaches to generate interrogate
metabolome data sets implies that metabolic profiling will
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continue to extend its value in mechanism of action (and
other) studies.

It is suggested herein that reverse pharmacology or
chemical genetics, the use of medicinal chemistry to
discover drug targets and dissect signal transduction
pathways, will benefit greatly from the information
generated through metabolic profiling.
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